If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10x-31=0
a = 4; b = -10; c = -31;
Δ = b2-4ac
Δ = -102-4·4·(-31)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{149}}{2*4}=\frac{10-2\sqrt{149}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{149}}{2*4}=\frac{10+2\sqrt{149}}{8} $
| 1z+9=4 | | 4x+1/15=2x/10 | | -1+2(3x-1)=1 | | -7x-8=3x-2 | | 5x^2+16x-20=0 | | 0.2s=8 | | 10x+2=-13 | | 4(2x-1)-6=14 | | 4x+36=24 | | 6p=8p-2p | | 1.6x+x=3 | | V=1/3πR²h | | 3/x2-x-6=4/2x+x-6 | | -3(2x-3)+1=16 | | ×/3x-5=13 | | X+0.09x=201.65 | | 2/3x-4=5/6x+7 | | 2.5=1.04n | | 3/8+1/2x=2x | | -(2x+4)+6=-2 | | 3x-2/3=x-3/2=5/6 | | 4x+7-11=-2 | | y(2/3)=4 | | y=10^3 | | 1.05^x=60 | | -5(x-5)+15=30 | | x+3=1+x2 | | -5(x-5+15=30 | | r+9=9 | | 340,282,366,920,938,463,463,374,607,431,768,211,455-e=99999999999999999999999999999999 | | -(x-5)+15=40 | | 340,282,366,920,938,463,463,374,607,431,768,211,455+e=999999999999999999999999999999 |